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1. Introduction 

In that part of mathematical psychology and economics concerned with 
choice behavior, far more attention has been given to the probability pat- 
terns exhibited by the responses than to the other equally obvious response 
measure, the response latency. From time to time papers have appeared in 
which a general form for the latency distribution has been derived (e.g., [3, 
Section 14.41, [61, I71, [81, and [16, Appendix 21); Audley [I] has attempted to 
deduce the two-alternative response probabilities from a latency model; and 
several experimentalists (e.g., [lo], [12], [13], and [14]) have pointed out that 
mean reaction times are roughly linear with Shannon's information measure 
of the probability distribution of the stimulus presentation. Undoubtedly, 
there are several other relevant papers in the literature, but nothing like 
the number one might, a priori, expect. 

Such limited and inconclusive theorizing hardly seems to do justice to a 
response variable that is, of necessity, omnipresent in our empirical studies 
and that most experimentalists are certain contains a good deal of informa- 
tion beyond that available from the response probabilities. For example, 
a part of the Skinnerian message is that time (in the form of response rates) 
is an important dependent variable that can be controlled to a marked de- 
gree by the schedule of reinforcement. So far, not one mathematical study 
has appeared that attempts to account for these data! One can hope that 
a better understanding of simple latency distributions may suggest both the 
latency parameters that are under control in the Skinnerian experiments and 
possible models for the nature of the control. 

Such, however, is for the future: the aims of this paper are much more 
modest. Only those simple choice situations are considered in which a sub- 
ject must select one of several responses. Distributions over the responses 
and latencies are assumed to exist, and a simple model is developed that 

This work, which was carried out when I was a member of the Department of Social 
Relations, Harvard University, was supported in part by grant NSF G 5544 from the 
National Science Foundation. I am indebted to Mrs. Elizabeth Shipley and to Professor 
Robert R. Bush for their helpful comments. 
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leads to constraints on them. The general philosophy is similar to that of 
[16], in that we will worry about the inter-relations among the distributions 
when different, but related, sets of responses are available. Indeed, this 
study began as an attempt to generalize the basic assumption in [16]. Al- 
though that aim has not been achieved, an interesting restriction is developed 
and its relation to the principal assumption in [16] is explored. Next, it is 
shown that if in addition to our restriction and the assumption of [16] it is 
assumed that the mean latency of a response is a continuous function of the 
response probability, with the response set a parameter of the function, then 
that function must be logarithmic. Finally, the family of gamma distributions 
with a fixed decay parameter are shown to satisfy the basic restriction, 
provided that the other two parameters of the distributions exhibit a 
certain additive property. It is not known what other distributions, if any, 
meet our bssic equation. 

2. The Basic Equations 

Let us consider a subject who, when a certain stimulus occurs, initiates 
a decision process that he ultimately terminates by choosing one response 
from a prescribed set of possible responses. We shall be concerned with 
both the response chosen and the elapsed time, or latency, of the response. 
Given that R is the set of available responses, let PR(x; t )  denote the joint 
response probability density that response x is made t time-units after the 
activating stimulus occurs. We shall assume that these response densities 
are sufficiently well-behaved mathematical functions so that certain Laplace 
transforms, certain limits, and 

exist. This quantity is simply interpreted as the probability that x is chosen 
when R is available; it will be referred to as a response probability. R'e require, 
of course, that 

It is far from clear how human subjects, or other organisms, decompose 
and resolve such decisions into simpler ones, but one possibility is this: The 
subject surveys (a portion of) the set R and isolates some response, say y ,  
as not worthy of further consideration, thereby reducing his choice problem 
to the set R - ( y ) .  He repeats this elimination process until a two-element 
set is reached, a t  which point he makes the final, and only reported, deci- 
sion by either rejecting the poorer or choosing the better response-it does not 
matter which, for they are equivalent. In this model we assume that the 
over-all decision latency is simply the algebraic sum of the several rejection 
latencies from the ever-decreasing sets of possible responses. 

It is important that one misinterpretation not be made. It is not implied 
either that the subject views y as the least desirable response when he dis- 
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cards it from R or that its latency is nearly as long as would be required 
to determine which response is the worst. It is sufficient for the subject 
to discover some other response in R that he deems better than y in order 
to discard y. Thus, one possible procedure is for him to select two re- 
sponses a t  random, compare them, and discard the poorer; but we shall not 
assume this mechanism. 

However the discarding is done, we may postulate a joint discard proba- 
bility density QR(y; r )  that the first response discarded from R is y and that 
this occurs r time-units after stimulation. Of course, in the usual experi- 
ments this discard density Q is not an observable in the same sense that 
the response density P is. Rather, it is a theoretical construct that can be 
given meaning and that can sometimes be calculated in terms of a particular 
theory.' As for P ,  we define 

and assume that 

QR(y) will be referred to as a discard probability. 
Now, if y is discarded from R at time r ,  then the decision process begins 

anew at time r with the reduced set R - { y ) .  If response x is chosen from 
R - { y )  in exactly t - r units of time, then the over-all process has been a 
choice of x from R in t units of time. Integrating over all physically pos- 
sible values of r and summing over all possible first discards from R yields 
the following set of convolution equations: 

These equations are basic to the rest of this paper. 
For p > 0, the Laplace transform2 of PR(x; t )  is defined as  

An analogous definition holds for Q,(y; r) .  By well-known properties of the 
transform, (5) can be converted into the algebraic equation 

An important relation arises when p + 0, provided that we assume the 
density functions are sufficiently well behaved so that the following limits 
exist: 

Possibly this statement is too strong for, a s  L. S. Shapley suggested to me in con- 
versation, one could present the subject with a written list of alternatives and require 
that he cross out all but his choice. T h e  order and times of crossing out the discarded 
alternatives could be observed and used to estimate Q .  

For an  elementary discussion of Laplace transforms, see [9] .  
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and 

lim L(QR, Y ;  P )  = QR(Y)  . 
P-0 

Assuming this, we find that (7)  immediately implies 

This equation is also important in the rest of the paper. 

3. An Example 

If, as will surely be the case in practice, the distributions PR and PR-(10 
are known or estimated and Q H  is unknown, then (10) and (for each p )  (7)  
each consist of r = I RI linear equations in their r unknowns QR(x) and 
L(QR, X ;  p ) ,  respectively. Except in those rare cases when the determinant 
of coefficients is 0 ,  we may always solve for the unknowns; however, it is 
not certain in general that the solutions of (10) will form a probability distri- 
bution or that those of (7)  will form Laplace transforms of density functions. 

The following example illustrates the problem. Let R = { 1 , 2 , 3 )  and, for 
simplicity of notation, let 

where P ( i ,  j )  stands for Plr,jl(i). Equation (10) is, therefore, the matrix 
equation P = MQ, where 

0 b  a  

.=[ c  0  a ] .  

1 - c  1 - b  0  

It is easily verified that M-I exists if and only if 

in which case it is given by 

The numerical values a  = 314, b  = 718, c  = 213, and P = (5/12,4/12, 3/12) do 
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not seem obviously implausible, but computing Q = M-'P we obtain Q = 
(21139, 22/39, -4/39), which is not a probability distribution. Thus, either 
the chosen probabilities do not arise in practice or (10) does not make sense. 

Although it seems of no particular practical import, it may be worth not- 
ing that if QR and PR-luJ are both distributions, then the function PR defined 
by (10) is also a distribution. Since all of the right-hand terms in (10) are 
non-negative, i t  is sufficient to establish that the sum over R is 1. If we 
define PR-l,)(~) = 0,  then by (10) 

C PR(x) = C C Q R ( Y ) P R - I U J ( X )  
z E R  z E R  Y E R  

In the following sections we shall be concerned with sufficient conditions 
on the P's so that (10) can be solved for Q's that form probability distri- 
butions and so that (5) can be solved for probability densities. 

4. A Solution to Equation (10) 

In [16], I have investigated the following assumption about the choice 
probabilities: 

CHOICE AXIOM. If P(x,  y )  # 0,1  for x, y e R, then for every x e S c R ,  

PR(x) = Ps(x)C PR(Y) . 
Y E S  

THEOREM 1. If P(x ,  y) # O,1 for x, y e R, and if  the response probabilities 
satisfy the choice axiom, then QR(x) = [l - ~ R ( x ) ] / ( Y  - I ) ,  where r = I R I ,  is 
the unique solution to ( lo) ,  and it is a Probability distribution. 

PROOF. By the choice axiom, 

It is easy to show from P(x,  y) # 0 , l  and the choice axiom that all of the 
probabilities in (11) are different from 0 and 1. Solving (11) for PR-lv l (~)  
and substituting it in ( lo) ,  we obtain 

Dividing by PR(x) and setting 4(y ,  R )  = QR(y)/[ l  - P R ( ~ ) ]  yields 

By letting x assume two different values and subtracting the resulting equa- 
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tions, we see that 4(x, R) = d(y, R); hence, 4(x, R) = l/(r - 1). By substitu- 
tion, it is easy to show that QR(x) = [ l  - ~R(x)]/(Y - 1) is, indeed, a solution 
when the choice axiom holds. 

It remains to establish only that this solution is a probability distribution. 
Since 0 $ PR(x)  6 1, we have QR(x) 2 0, hence it is sufficient to show that 
the Q's sum to 1: 

x QR(x) = x 1 - PR(x) - Y - 1 -1 .  
Z E R  z E R  y - 1  Y - 1  

Although this form for Q suggests some sort of a random process, the 
following calculation shows that it is not the one, mentioned briefly in Sec- 
tion 2, in which two responses are picked at random and the one deemed 
poorer discarded. In that case, the probability that x and y are drawn is 
2/r(r - 1) and, given that they are drawn, the probability that x is discarded 
is P(y, x). The total probability, according to this model, that x is discarded 
is obtained by summing the product 

Using the same notation as in Section 3, suppose that a = 314, b = 9/10, c = 
314, and P = (9/13,3/13,1/13). As is easily verified, these values satisfy the 
choice axiom, but 

5. A Property of the Means and the Variances of the Latancies 

The mean latency of response x, on the assumption that x occurs, is 
defined to be 

We observe that by differentiating (6) we have 

Thus, if the limit on the right exists as p -+ 0, 'as we shall assume, we obtain 

lim aL(QR' Y; P) = - ,~(QR, Y)QR(Y) , 
P-0 a~ 

again assuming that the limit exists. Now, if we differentiate (7) with 
respect to p and multiply through by -1, we obtain 
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Assuming that the limits in (8), (9), and (12) exist as p -, 0, we find that 

If we assume the choice axiom, Theorem 1 implies 

Substituting this into the preceding equation and dividing by PR(x), we see 
that we have proved 

THEOREM 2. If (5)  is satisfied, if the limits in  (8),  (9), and (12) exist, and 
if the response probabilities satisfy the choice axiom, then 

If the variances u2(PR, x)  and u'(QR, y )  are defined in the usual manner, 
then, assuming that the following limits exist, it is easy to see that 

and 

(13b) lim 
P-0 

B?L(QR' Y ;  P )  = { ~ ' ( Q R .  Y )  + [ / ~ ( Q R ,  Y ) I ~ Q R ( Y )  . 
ap ' -  

A similar argument to that used to prove Theorem 2 leads to 

THEOREM 3. If (5)  is satisfied, if the limits in (8),  (9),  (12), and (13) exist, 
and if the response probabilities satisfy the choice axiom, then 

6. Mean Latency as a Function of Response Probability 

In this section we show that if the assumptions made so far are satisfied 
and if, in addition, the mean latency is a function of the response set and 
the response probability, then that function is logarithmic. 
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THEOREM 4. Suppose that families of distributions P and Q exist such that 
(i) equation (5) is satisfied, 

(ii) the limits in (8), (9), and (12) exist, 
(iii) the response probabilities satisfy the choice axiom, and 
(iv) the mean of P.~(x; ~) /PR(x) ,  namely p(P.q, x), is a function of R and a 

continuous function of PR(x) only; 
then there are functions A (R)  and B(R)  > 0 such that 

PROOF. Denote the function mentioned in hypothesis (iv) as  follows: 
~ ( P R ,  X )  = f [PR(x), Rl. According to the choice axiom and Theorem 1, 

Thus, Theorem 2 can be rewritten as 

Summing over y e R - {x )  and rewriting yields 

Consider (14) in the special case in which PR-~ ,~ (x )  + 1 for all y; then 

(15) C ~ ( Q R ,  Y )  = C { f  [QR(Y)(Y - I ) ,  R]  - f  [1, R - { Y ) ] )  . 
I E R - I t 1  v € R - l z l  

If we set P, = P R - ~ , ~ ( x ~  and Q, = QR(Y)(Y - 1) and substitute (15) in (14), 
then 

Define F(Pu, R )  = f (P,, R )  - f (1, R);  then F(1, R )  = 0 and (16) can be written 

Again, we consider a special case, namely QR(y) = l / ( r  - I ) ,  for which (17) 
implies 

Substituting this in (17) yields 

Finally, we consider the special case in which P, = P and Q, = Q for all 
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y e R - {x), for which (18) reduces to 

Because F is continuous in the first variable for each fixed R and satisfies 
(19), there exists a function B(R) such that F(P ,  R) = -B(R) log P. Hence, 
by the definition of F and f, 

where A(R) = f (1, R). 
Because jl(PR, X) > 0, it follows that B(R) > 0, which concludes the proof. 
The conclusion of Theorem 4 is, of course, empirically testable. So also 

is the following weaker assertion about expected latencies over all the 
responses: 

where 

denotes Shannon's information measure (or uncertainty) of the response 
probability distribution. 

Thus, the present theory leads to the prediction that the average latency 
over all responses will be a linear function of the uncertainty of the re- 
sponses, with the two parameters dependent upon the response set. Consid- 
erable experimental evidence exists (see [lo], [12], [13], and [14]) that shows 
the average latency to be an approximately linear function of the uncertainty 
of the stimulus presentation, but so far as I know, no one has made the 
corresponding comparison with the response uncertainty. But because there 
is a fairly general tendency for subjects to respond in such a way that the 
response probabilities roughly match the stimulus probabilities, it is unlike- 
ly that the two information measures will be very different. So one may 
conclude that the existing information-theory evidence tends to support our 
conclusions. 

Against the conclusion of Theorem 4 are two sets of data with which I 
am familiar. The more recent, Berlyne's [Z], does not, it seems to me, 
really apply, because two somewhat different experimental procedures were 
compared. One anticipates that both A(R) and B(R) will depend upon the 
experimental details, and so an adequate test of our conclusions can be had 
only by holding these details fixed. Kellogg's [15] earlier work on response 
latencies when the subjects were making a brightness discrimination 
between two patches of light appears to be suited to test our results. A 
constant stimulus and six variable stimuli were employed as in a standard 
discrimination experiment, and so far as the subjects knew their judgments 
were the only data collected; actually, reaction times were also observed. 
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Response Probability 

Figure 1. Mean response latency vs. mean response probability. The data points are 
adapted from [IS] and are the average of five subjects. Each point represents 240P obser- 
vations, where ) is the response probability. The smooth curve is the function 0.80-0.28 
log, P. 

Not enough raw data is presented in Kellogg's paper so that the mean re- 
sponse latency can be plotted as a function of the response frequency for 
each of the five subjects separately; however, the average function for the 
five subjects can be obtained. These data points are shown in Figure 1. 
Each point is based upon 240p observations, where P is the choice frequency. 
Thus, for p < 0.1 the mean latencies are probably not very reliable, and so 
I would not take very seriously the four points at the left of the plot. 
Nonetheless, it is clear that for p > 0.1 the data points trace out a convex 
function, whereas Theorem 4 predicts a concave function. The theoretical 
function drawn was chosen to be approximately correct for p = 0.2 and 
p = 1.0; it is correct nowhere else. 

Although Kellogg's data cast considerable doubt upon the validity of 
Theorem 4 for psychophysical di~crimination,~ unfortunately they do not 

3 In conversation, Professor F. W. Irwin has questioned this conclusion. He feels 
that Kellogg's experiment is no more suitable for testing this theory than Berlyne's 
because, from our point of view, it is seven distinct experiments-one for each of the 
seven variable stimuli. The only fully satisfactory test would be an experiment 
having a fixed set of, say, five or six responses always available, but with the response 
probabilities as  far from equal as possible. 
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allow us to decide just where the trouble lies. Additional studies are needed 
to ascertain whether (5), the choice axiom, or condition (iv) of the theorem 
is at fault. 

7. A Set of Choice-Latency Distributions Satisfying Equation (5) 

The so-called gamma, or Pearson Type 111, distributions (including the 
simple exponential) have probably been more often suggested than any 
others as the appropriate form for latency distributions ([3], 171, [8], [16]). 
In this section I shall show that they satisfy (5), provided that the parame- 
ters are properly restricted. We define the distributions as follows: 

and 
io 

where r denotes the gamma function. The parameters a(x, R) and to(x, R) 
may depend upon PR[x) as well as on x and R, and a(y,  R) and ro(y, R) may 
depend upon QR(y). Observe that the notation is chosen to be consistent 
with (1) and (3). 

Issues of parameter estimation are discussed in [3], [ll], and [17]. 

THEOREM 5. If the distributions defined by (20) and (21) are such that 
(i) P R  and QR satisfy (lo), 

(ii) a(x, R) = n(y, R) + a(x, R - {y)) for all x, y € R (x f Y), 
(iii) to(x, R) = ro(y, R) + to(x, R - {y)) for all x, y e R (X f y), 

then they satisfy (5). 

PROOF. Define 

P:(~; t) = PR(x; t)eA[l-lo(z.R)], Q;(y; r) = QR(y; r) eAIT-r~(~.R)I . 
Then we show, using hypothesis (iii), that P R  and QR satisfy (5), provided 
that P2 and QR* do: 

It is well known that 

L(Pz ,  x; p )  = PR(x) eLo(z.R)(A-p) 
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and 

From this and our hypotheses we obtain 

= L(P: , x; p ) .  

So the transforms satisfy (7), which is the transform of (5).  
This set of solutions has the intuitively desirable feature that all of the 

distributions are of the same mathematical form. One might suppose that 
if decision latency is a basic psychological concept, then all choices, includ- 
ing acts of discarding, should result in latency distributions of the same form. 
Now it is clear that if a family of distributions is chosen for the P's, then 
(5) will not in general lead to the same form for the Q's, assuming that it 
leads to a distribution a t  all. An interesting problem is to formulate 
rigorously the requirement that the distributions all have the same form 
and then to determine all sets of possible solutions to (5) that meet the 
requirement; presumably, there are very few. 

8. A Comment on Audley's Work 

In [16] it was shown that the choice axiom is equivalent to the assump- 
tion that there exists a positive ratio scale v over the responses such that 
for all S c R,  

Several of us who have been working on that theory have wondered if there 
might not be some comparatively simple relation between the v-scale and 
some of the parameters of the latency distribution. An idea for making 
such a connection is contained in [ I ] ,  but it appears to be inconsistent with 
the present notions. 

Audley [ l ]  develops a stochastic two-choice learning model, in part, by 
assuming latency distributions of the form given in (20) with a(1, R)  = 
a(2, R) = 1 and to(1, R)  = to(2, R)  = 0,  where R = {1 ,2) .  Then, in essence, 
he defines v(1) = I P R ( ~ )  and v(2) = RPR(2), from which it follows that 1 = 
v(1) + v(2) and PR(i) = v( i ) / [v( l )  + v(2)]. This can be generalized to arbitrary 
R,  provided that the response probabilities in (20) satisfy the choice axiom 
(no assumptions need be made about a and to), simply by setting v(x) = 

RPR(x) and noting that 
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This, however, does not seem satisfactory for two reasons. First, it makes 
1 a function of, a t  least, R, and so the distributions -will no longer satisfy 
(5). Second, it means that the exponential decay part of the distribution 
becomes stronger the larger the set of responses, and this seems dubious. 
Neither of these facts is, however, at all conclusive, and it may be worth- 
while to pursue this tack further; I will not do so here. 

9. Summary 

Assuming that an organism makes its response from a set of possible re- 
sponses by discarding, one by one, those it considers undesirable, and as- 
suming that the total response latency is the simple sum of the discard 
latencies, we developed the following relation [equation (5)] between the re- 
sponse densities PR(x; t) and the postulated discard densities QR(y; r): 

From this equation, a similar relation was derived [equation (lo)] for the 
response and discard probabilities: 

Theorem 1 established that the second equation has the simple solution 
QR(y) = [ l  - PH(y)]/(r - l), provided that the response probabilities satisfy 
the choice axiom discussed in [16]. In addition, it was shown in Theorem 
2 that the mean latencies of specific responses and discards must exhibit a 
simple additive property when the response probabilities satisfy the choice 
axiom. 

If one adds to the conditions needed in Theorem 2 the assumption that 
the mean latency is a continuous function of the response probability, with 
the response set a parameter of the function, then it was shown in Theorem 
4 that jl(PR, X) = A(R) - B(R) log PR(x), where A(R) and B(R) > 0 are func- 
tions of the response set R. The average latency over all responses is, 
therefore, A(R) + B(R)H(PR), where H(PR) is Shannon's information measure 
of the response probability distribution. In most situations, this prediction 
is similar to the empirical generalization that the average latency is linear 
with the information measure of the stimulus probability distribution. How- 
ever, the more precise prediction that the mean latency of a response is 
linear with the logarithm of the response probability was shown to be in- 
consistent with existing data [15]. What assumptions are at fault is not 
known. 

Returning to the first basic equation, we showed in Theorem 5 that the 
familiar gamma distributions [equations (20) and (21)] satisfy (5), provided 
that the response and discard probabilities satisfy the second equation above 
[equation (lo)], that the exponential decay parameter is the same in all the 
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distributions, and that the other two sets of distribution parameters each 
meet a simple additivity requirement. It is not known what, if any, other 
families of distribution satisfy (5). 
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